12
Views
53
CrossRef citations to date
0
Altmetric
Article

Point Mutations in Two EVI1 Zn Fingers Abolish EVI1-GATA1 Interaction and Allow Erythroid Differentiation of Murine Bone Marrow Cells

, , , , , & show all
Pages 7658-7666 | Received 28 Feb 2006, Accepted 28 Jul 2006, Published online: 27 Mar 2023
 

Abstract

EVI1 is an aggressive nuclear oncoprotein deregulated by recurring chromosomal abnormalities in myelodysplastic syndrome (MDS). The expression of the corresponding gene is a very poor prognostic marker for MDS patients and is associated with severe defects of the erythroid lineage. We have recently shown that the constitutive expression of EVI1 in murine bone marrow results in a fatal disease with features characteristic of MDS, including anemia, dyserythropoiesis, and dysmegakaryopoiesis. These lineages are regulated by the DNA-binding transcription factor GATA1. EVI1 has two zinc finger domains containing seven motifs at the N terminus and three motifs at the C terminus. Supported by results of assays utilizing synthetic DNA promoters, it was earlier proposed that erythroid-lineage repression by EVI1 is based on the ability of this protein to compete with GATA1 for DNA-binding sites, resulting in repression of gene activation by GATA1. Here, however, we show that EVI1 is unable to bind to classic GATA1 sites. To understand the mechanism utilized by EVI1 to repress erythropoiesis, we used a combination of biochemical assays, mutation analyses, and in vitro bone marrow differentiation. The results indicate that EVI1 interacts directly with the GATA1 protein rather than the DNA sequence. We further show that this protein-protein interaction blocks efficient recognition or binding to DNA by GATA1. Point mutations that disrupt the geometry of two zinc fingers of EVI1 abolish the protein-protein interaction, leading to normal erythroid differentiation of normal murine bone marrow in vitro.

This work was supported by NIH R01 grants HL72691, HL82935, HL79580, and CA96448 (G.N.).

We thank S. Buonamici for her help with cloning.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.