126
Views
178
CrossRef citations to date
0
Altmetric
Article

Role of Disulfide Bridges Formed in the Luminal Domain of ATF6 in Sensing Endoplasmic Reticulum Stress

, , &
Pages 1027-1043 | Received 08 Mar 2006, Accepted 03 Nov 2006, Published online: 27 Mar 2023
 

Abstract

ATF6 is a membrane-bound transcription factor activated by proteolysis in response to endoplasmic reticulum (ER) stress to induce the transcription of ER chaperone genes. We show here that, owing to the presence of intra- and intermolecular disulfide bridges formed between the two conserved cysteine residues in the luminal domain, ATF6 occurs in unstressed ER in monomer, dimer, and oligomer forms. Disulfide-bonded ATF6 is reduced upon treatment of cells with not only the reducing reagent dithiothreitol but also the glycosylation inhibitor tunicamycin, and the extent of reduction correlates with that of activation. Although reduction is not sufficient for activation, fractionation studies show that only reduced monomer ATF6 reaches the Golgi apparatus, where it is cleaved by the sequential action of the two proteases S1P and S2P. Reduced monomer ATF6 is found to be a better substrate than disulfide-bonded forms for S1P. ER stress-induced reduction is specific to ATF6 as the oligomeric status of a second ER membrane-bound transcription factor, LZIP/Luman, is not changed upon tunicamycin treatment and LZIP/Luman is well cleaved by S1P in the absence of ER stress. This mechanism ensures the strictness of regulation, in that the cell can only process ATF6 which has experienced the changes in the ER.

We thank Kaoru Miyagawa for technical and secretarial assistance.

This work was supported, in part, by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (14037233 and 15GS0310 to K.M. and 17770158 to T.O.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.