51
Views
32
CrossRef citations to date
0
Altmetric
Research Article

MCL-1 Depletion Impairs DNA Double-Strand Break Repair and Reinitiation of Stalled DNA Replication Forks

, , , , , & show all
Article: e00535-16 | Received 28 Sep 2016, Accepted 24 Oct 2016, Published online: 17 Mar 2023
 

ABSTRACT

Myeloid cell leukemia 1 (MCL-1) is a prosurvival BCL-2 protein family member highly expressed in hematopoietic stem cells (HSCs) and regulated by growth factor signals that manifest antiapoptotic activity. Here we report that depletion of MCL-1 but not its isoform MCL-1S increases genomic instability and cell sensitivity to ionizing radiation (IR)-induced death. MCL-1 association with genomic DNA increased postirradiation, and the protein colocalized with 53BP1 foci. Postirradiation, MCL-1-depleted cells exhibited decreased γ-H2AX foci, decreased phosphorylation of ATR, and higher levels of residual 53BP1 and RIF1 foci, suggesting that DNA double-strand break (DSB) repair by homologous recombination (HR) was compromised. Consistent with this model, MCL-1-depleted cells had a reduced frequency of IR-induced BRCA1, RPA, and Rad51 focus formation, decreased DNA end resection, and decreased HR repair in the DR-GFP DSB repair model. Similarly, after HU induction of stalled replication forks in MCL-1-depleted cells, there was a decreased ability to subsequently restart DNA synthesis, which is normally dependent upon HR-mediated resolution of collapsed forks. Therefore, the present data support a model whereby MCL-1 depletion increases 53BP1 and RIF1 colocalization at DSBs, which inhibits BRCA1 recruitment, and sensitizes cells to DSBs from IR or stalled replication forks that require HR for repair.

ACKNOWLEDGMENTS

We thank the members of Pandita laboratory at the Houston Methodist Research Institute for their support during the execution of this work.

This work was supported by funds from the Houston Methodist Research Institute and MD Anderson Cancer Center, Houston, TX, and National Institutes of Health grants CA129537 and GM109768.

We declare no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.