65
Views
87
CrossRef citations to date
0
Altmetric
Article

PGC-1-Related Coactivator: Immediate Early Expression and Characterization of a CREB/NRF-1 Binding Domain Associated with Cytochrome c Promoter Occupancy and Respiratory Growth

, , , &
Pages 7409-7419 | Received 04 Apr 2006, Accepted 31 Jul 2006, Published online: 27 Mar 2023
 

Abstract

PGC-1-related coactivator (PRC) was initially characterized as a transcriptional coactivator that shares structural and functional features with PGC-1α. Both coactivators interact with nuclear respiratory factor 1 (NRF-1) and activate NRF-1 target genes required for respiratory chain expression. Here, we establish that PRC belongs to the class of immediate early genes that are rapidly induced in the transition from quiescence to proliferative growth. As observed for other members of this class, the rapid serum induction of PRC mRNA does not require de novo protein synthesis and inhibition of protein synthesis stabilizes PRC mRNA, leading to its superinduction. Previous work indicated that PRC activation of cytochrome c expression occurs through cis-acting elements that bind both NRF-1 and CREB. Here, we demonstrate that, like NRF-1, CREB binds PRC in vitro and exists in a complex with PRC in cell extracts. Both CREB and NRF-1 bind the same sites on PRC, and the interaction with CREB requires the CREB b-Zip DNA binding domain. Moreover, a CREB/NRF-1 interaction domain on PRC is required for its trans activation of the cytochrome c promoter and a PRC subfragment containing this domain inhibits respiratory growth on galactose when expressed in trans from a lentivirus vector. Finally, PRC associates with the cytochrome c promoter in vivo and its occupancy of the promoter is markedly elevated in response to serum induction of quiescent fibroblasts. The results establish that PRC is an immediate early gene product that can target key transcription factors as an early event in the program of cellular proliferation.

We thank Winship Herr of Cold Spring Harbor Laboratories for the gift of pNCITE/HCF.

This work was supported by United States Public Health Service grant GM32525-23.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.