216
Views
7
CrossRef citations to date
0
Altmetric
Research Article

DEAD Box Protein Family Member DDX28 Is a Negative Regulator of Hypoxia-Inducible Factor 2α- and Eukaryotic Initiation Factor 4E2-Directed Hypoxic Translation

, , & ORCID Icon
Article: e00610-19 | Received 26 Nov 2019, Accepted 20 Dec 2019, Published online: 03 Mar 2023
 

ABSTRACT

Hypoxia is a deficiency in oxygen delivery to tissues and is connected to physiological and pathophysiological processes such as embryonic development and cancer. The master regulators of oxygen homeostasis in mammalian cells are the heterodimeric hypoxia-inducible transcription factors 1 and 2 (HIF-1 and HIF-2, respectively). The oxygen-labile HIF-2α subunit has been implicated not only in transcription but also as a regulator of eukaryotic initiation factor 4E2 (eIF4E2)-directed hypoxic translation. Here, we have identified the DEAD box protein family member DDX28 as an interactor and negative regulator of HIF-2α that suppresses HIF-2α’s ability to activate eIF4E2-directed translation. Stable silencing of DDX28 via short hairpin RNA (shRNA) in hypoxic human U87MG glioblastoma cells caused an increase of eIF4E2 binding to the m7GTP cap structure and the translation of eIF4E2 target mRNAs (including the HIF-2α mRNA itself). DDX28 depletion elevated nuclear and cytoplasmic HIF-2α protein, but HIF-2α transcriptional activity did not increase, possibly due to its already high nuclear abundance in hypoxic control cells. Depletion of DDX28 conferred a proliferative advantage to hypoxic, but not normoxic, cells. DDX28 protein levels are reduced in several cancers, including gliomas, relative to levels in normal tissue. Therefore, we uncover a regulatory mechanism for this potential tumor suppressor in the repression of HIF-2α- and eIF4E2-mediated translation activation of oncogenic mRNAs.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

ACKNOWLEDGMENTS

We thank Scott Ryan and Paul Spagnuolo (University of Guelph) for technical advice and reagents.

This work was funded by Natural Sciences and Engineering Council of Canada (NSERC) grant 04807 to J.U. S.L.E. was supported by NSERC Canada Graduate Scholarships—Master’s (CGS M).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.