83
Views
103
CrossRef citations to date
0
Altmetric
Article

Peripheral Disruption of the Grb10 Gene Enhances Insulin Signaling and Sensitivity In Vivo

, , , , , , , , , , , & show all
Pages 6497-6505 | Received 18 Apr 2007, Accepted 28 Jun 2007, Published online: 27 Mar 2023
 

Abstract

Grb10 is a pleckstrin homology and Src homology 2 domain-containing protein that interacts with a number of phosphorylated receptor tyrosine kinases, including the insulin receptor. In mice, Grb10 gene expression is imprinted with maternal expression in all tissues except the brain. While the interaction between Grb10 and the insulin receptor has been extensively investigated in cultured cells, whether this adaptor protein plays a positive or negative role in insulin signaling and action remains controversial. In order to investigate the in vivo role of Grb10 in insulin signaling and action in the periphery, we generated Grb10 knockout mice by the gene trap technique and analyzed mice with maternal inheritance of the knockout allele. Disruption of Grb10 gene expression in peripheral tissues had no significant effect on fasting glucose and insulin levels. On the other hand, peripheral-tissue-specific knockout of Grb10 led to significant overgrowth of the mice, consistent with a role for endogenous Grb10 as a growth suppressor. Loss of Grb10 expression in insulin target tissues, such as skeletal muscle and fat, resulted in enhanced insulin-stimulated Akt and mitogen-activated protein kinase phosphorylation. Hyperinsulinemic-euglycemic clamp studies revealed that disruption of Grb10 gene expression in peripheral tissues led to increased insulin sensitivity. Taken together, our results provide strong evidence that Grb10 is a negative regulator of insulin signaling and action in vivo.

This study was supported by National Institutes of Health grants RO1 DK52933 (F.L.) and RO1 DK69930 (L.Q.D.).

We thank Vivian Diaz and her staff at the Nathan Shock Animal Core for their expert care of the mice.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.