39
Views
13
CrossRef citations to date
0
Altmetric
Article

Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast

, , , , &
Pages 3669-3683 | Received 24 Jul 2015, Accepted 11 Aug 2015, Published online: 20 Mar 2023
 

Abstract

Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs.

ACKNOWLEDGMENTS

This work was supported by grants from Ministerio de Economía y Competitividad (BFU2011-23326), Generalitat de Valencia (ACOMP2011/031), and the NIH Director's New Innovator Award (DP2 OD008654-01). Alessandro Rienzo was a recipient of a predoctoral FPI grant from Ministerio de Economía y Competitividad.

We thank J. M. Mulet for the kind gift of the ENA1 overexpression plasmid pRS699-ENA1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.