55
Views
27
CrossRef citations to date
0
Altmetric
Article

Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition

, , , , , , & show all
Pages 4069-4082 | Received 28 Jul 2015, Accepted 17 Sep 2015, Published online: 20 Mar 2023
 

Abstract

PTPN12 is a cytoplasmic protein tyrosine phosphatase (PTP) reported to be a tumor suppressor in breast cancer, through its capacity to dephosphorylate oncogenic receptor protein tyrosine kinases (PTKs), such as ErbB2. However, the precise molecular and cellular impact of PTPN12 deficiency in breast cancer progression remains to be fully clarified. Here, we addressed this issue by examining the effect of PTPN12 deficiency on breast cancer progression in vivo, in a mouse model of ErbB2-dependent breast cancer using a conditional PTPN12-deficient mouse. Our studies showed that lack of PTPN12 in breast epithelial cells accelerated breast cancer development and lung metastases in vivo. PTPN12-deficient breast cancer cells displayed enhanced tyrosine phosphorylation of the adaptor Cas, the adaptor paxillin, and the kinase Pyk2. They exhibited no detectable increase in ErbB2 tyrosine phosphorylation. PTPN12-deficient cells were more resistant to anoikis and had augmented migratory and invasive properties. Enhanced migration was corrected by inhibiting Pyk2. PTPN12-deficient breast cancer cells also acquired partial features of epithelial-to-mesenchymal transition (EMT), a feature of more aggressive forms of breast cancer. Hence, loss of PTPN12 promoted tumor progression in a mouse model of breast cancer, supporting the notion that PTPN12 is a tumor suppressor in human breast cancer. This function was related to the ability of PTPN12 to suppress cell survival, migration, invasiveness, and EMT and to inhibit tyrosine phosphorylation of Cas, Pyk2, and paxillin. These findings enhance our understanding of the role and mechanism of action of PTPN12 in the control of breast cancer progression.

View publisher note:
Article of Significant Interest Selected from This Issue by the Editors

ACKNOWLEDGMENTS

We thank the members of the Veillette lab for discussions.

This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to A.V. N.W. is recipient of a Fellowship from Fonds de la Recherché du Québec—Santé (FRQS). A.V. holds the Canada Research Chair in Signaling in the Immune System.

J.L. planned experiments, performed experiments, interpreted data, and wrote the manuscript. D.D., C.M.S., and M.-C.Z. planned experiments, performed experiments, and interpreted data. N.W. and M.P. provided advice and interpreted data. W.J.M. provided critical reagents, provided advice, and interpreted data. A.V. planned experiments, generated reagents, interpreted data, wrote the manuscript, and obtained funding.

We declare no competing financial interests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.