43
Views
26
CrossRef citations to date
0
Altmetric
Article

Mammary-Specific Gene Activation Is Defined by Progressive Recruitment of STAT5 during Pregnancy and the Establishment of H3K4me3 Marks

, , , &
Pages 464-473 | Received 30 Jul 2013, Accepted 10 Nov 2013, Published online: 20 Mar 2023
 

Abstract

Differentiation of mammary secretory epithelium during pregnancy is characterized by sequential activation of genes over several orders of magnitude. Although the transcription factor STAT5 is key to alveolar development, it is not clear to what extent it controls temporal activation of genetic programs in secretory epithelium. To uncover molecular mechanisms effecting progressive differentiation, we explored genome-wide STAT5 binding and H3K4me3 (i.e., trimethylated histone H3 at K4) marks in mammary tissues at early and midpregnancy and at parturition. STAT5 binding to genes induced during pregnancy was low in immature mammary tissue but increased with epithelial differentiation. Increased STAT5 binding was associated with the establishment of H3K4me3 marks and transcriptional activation. STAT5 binding preceded the formation of H3K4me3 marks in some mammary-specific genes. De novo STAT5 binding was also found at distal sites, indicating enhancers. Furthermore, we established an exhaustive mammary transcriptome. Through integration of RNA-seq and STAT5 and H3K4me4 ChIP-seq data, we discovered novel mammary-specific alternative promoters and genes, including noncoding RNAs. Our findings suggest that STAT5 is an early step in establishing transcription complexes on genes specifically expressed in mammary epithelium. This is the first study in an organ that links progressive chromatin occupancy of STAT5 to the acquisition of H3K4me3 marks and transcription during hormone-induced differentiation.

View publisher note:
Articles of Significant Interest Selected from This Issue by the Editors

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.00988-13.

ACKNOWLEDGMENTS

High-throughput sequencing was performed by the NIDDK Genomics Core (Harold Smith).

This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.