35
Views
38
CrossRef citations to date
0
Altmetric
Article

Mouse Mutants Reveal that Putative Protein Interaction Sites in the p53 Proline-Rich Domain Are Dispensable for Tumor Suppression

, , , , &
Pages 1425-1432 | Received 05 Jun 2006, Accepted 18 Nov 2006, Published online: 27 Mar 2023
 

Abstract

The stability and activity of tumor suppressor p53 are tightly regulated and partially depend on the p53 proline-rich domain (PRD). We recently analyzed mice expressing p53 with a deletion of the PRD (p53ΔP). p53ΔP, a weak transactivator hypersensitive to Mdm2-mediated degradation, is unable to suppress oncogene-induced tumors. This phenotype could result from the loss of two motifs: Pin1 sites proposed to influence p53 stabilization and PXXP motifs proposed to mediate protein interactions. We investigated the importance of these motifs by generating mice encoding point mutations in the PRD. p53TTAA contains mutations suppressing all putative Pin1 sites in the PRD, while p53AXXA lacks PXXP motifs but retains one intact Pin1 site. Both mutant proteins accumulated in response to DNA damage, although the accumulation of p53TTAA was partially impaired. Importantly, p53TTAA and p53AXXA are efficient transactivators and potent suppressors of oncogene-induced tumors. Thus, Pin1 sites in the PRD may modulate p53 stability but do not significantly affect function. In addition, PXXP motifs are not essential, but structure dictated by the presence of prolines, PXXXXP motifs that may mediate protein interactions, and/or the length of this region appears to be functionally significant. These results may explain why the sequence of the p53 PRD is so variable in evolution.

SUPPLEMENTAL MATERIAL

We thank G. Campbell and B. Jaroszynski for technical assistance.

This work was supported by NIH grant 100845 to G.M.W. F.T. was supported in part by a fellowship from the Association pour la Recherche sur le Cancer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.