38
Views
130
CrossRef citations to date
0
Altmetric
Article

Compositional Determinants of Prion Formation in Yeast

, &
Pages 319-332 | Received 24 Aug 2009, Accepted 23 Oct 2009, Published online: 20 Mar 2023
 

Abstract

Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into β-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains.

We thank Reed Wickner, Olve Peersen, P. Shing Ho, Frank Shewmaker, Kevin Hatcher-Ross, and members of the Ross laboratory for helpful discussion and Nathan Liss, Holly Hamilton, and Daniel Lee for their tireless help in screening thousands of colonies.

This work was funded in part by an American Heart Association grant (0735321N) to E.D.R.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.