10
Views
15
CrossRef citations to date
0
Altmetric
Article

Serine Dephosphorylation of Receptor Protein Tyrosine Phosphatase α in Mitosis Induces Src Binding and Activation

&
Pages 2850-2861 | Received 04 Sep 2009, Accepted 06 Apr 2010, Published online: 20 Mar 2023
 

Abstract

Receptor protein tyrosine phosphatase α (RPTPα) is the mitotic activator of the protein tyrosine kinase Src. RPTPα serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPα Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPα pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPα, and intrinsic catalytic activity of RPTPα was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPα was induced in mitosis. GRB2 binding to RPTPα, which was proposed to compete with Src binding to RPTPα, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPα-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPα, illustrating that Src binding to RPTPα is not mediated by a pTyr-SH2 interaction. Mutation of RPTPα Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPα pSer204 facilitates Src binding, leading to RPTPα-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.

View publisher note:
Articles of Significant Interest Selected from This Issue by the Editors

We thank Rob Klompmaker (University Medical Center Utrecht) for technical assistance with FACS analysis and Mathieu Bollen and Nick Tonks for their advice and suggestions.

This study was supported by a Netherlands Proteomics Center grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.