29
Views
11
CrossRef citations to date
0
Altmetric
Article

14-3-3 (Bmh) Proteins Regulate Combinatorial Transcription following RNA Polymerase II Recruitment by Binding at Adr1-Dependent Promoters in Saccharomyces cerevisiae

, , , &
Pages 712-724 | Received 05 Sep 2012, Accepted 26 Nov 2012, Published online: 20 Mar 2023
 

Abstract

Adr1 and Cat8 are nutrient-regulated transcription factors in Saccharomyces cerevisiae that coactivate genes necessary for growth in the absence of a fermentable carbon source. Transcriptional activation by Adr1 is dependent on the AMP-activated protein kinase Snf1 and is inhibited by binding of Bmh, yeast 14-3-3 proteins, to the phosphorylated Adr1 regulatory domain. We show here that Bmh inhibits transcription by binding to Adr1 at promoters that contain a preinitiation complex, demonstrating that Bmh-mediated inhibition is not due to nuclear exclusion, inhibition of DNA binding, or RNA polymerase II (Pol II) recruitment. Adr1-dependent mRNA levels under repressing growth conditions are synergistically enhanced in a mutant lacking Bmh and the two major histone deacetylases (HDACs), suggesting that Bmh and HDACs inhibit gene expression independently. The synergism requires Snf1 and Adr1 but not Cat8. Inactivating Bmh or preventing it from binding to Adr1 suppresses the normal requirement for Cat8 at codependent promoters, suggesting that Bmh modulates combinatorial control of gene expression in addition to having an inhibitory role in transcription. Activating Snf1 by deleting Reg1, a Glc7 protein phosphatase regulatory subunit, is lethal in combination with defective Bmh in strain W303, suggesting that Bmh and Snf1 have opposing roles in an essential cellular process.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.01226-12.

ACKNOWLEDGMENTS

Chao Zhang generously provided the inhibitor, 2NM-PP1, for these studies, and Jim Broach provided the SNF1as allele (SNF1-I132G).

The research was supported by Public Health Service grant GM26079 from the National Institutes of Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.