51
Views
89
CrossRef citations to date
0
Altmetric
Article

Mms2-Ubc13-Dependent and -Independent Roles of Rad5 Ubiquitin Ligase in Postreplication Repair and Translesion DNA Synthesis in Saccharomyces cerevisiae

, , , , &
Pages 7783-7790 | Received 11 Jul 2006, Accepted 02 Aug 2006, Published online: 27 Mar 2023
 

Abstract

The Rad6-Rad18 ubiquitin-conjugating enzyme complex of Saccharomyces cerevisiae promotes replication through DNA lesions via three separate pathways that include translesion synthesis (TLS) by DNA polymerases η and ζ and postreplicational repair (PRR) of discontinuities that form in the newly synthesized DNA opposite from DNA lesions, mediated by the Mms2-Ubc13 ubiquitin-conjugating enzyme and Rad5. Rad5 is an SWI/SNF family ATPase, and additionally, it functions as a ubiquitin ligase in the ubiquitin conjugation reaction. To decipher the roles of these Rad5 activities in lesion bypass, here we examine the effects of mutations in the Rad5 ATPase and ubiquitin ligase domains on the PRR of UV-damaged DNA and on UV-induced mutagenesis. Even though the ATPase-defective mutation confers only a modest degree of UV sensitivity whereas the ubiquitin ligase mutation causes a high degree of UV sensitivity, we find that both of these mutations produce the same high level of PRR defect as that conferred by the highly UV-sensitive rad5Δ mutation. From these studies, we infer a requirement of the Rad5 ATPase and ubiquitin ligase activities in PRR, and based upon the effects of different rad5 mutations on UV mutagenesis, we suggest a role for Rad5 in affecting the efficiency of lesion bypass by the TLS polymerases. In contrast to the role of Rad5 in PRR, however, where its function is coupled with that of Mms2-Ubc13, Rad5 function in TLS would be largely independent of this ubiquitin-conjugating enzyme complex.

This work was supported by National Institutes of Health grant CA107650, a Wellcome Trust International Senior Research Fellowship, and Howard Hughes Medical Institute grant 55005612.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.