13
Views
68
CrossRef citations to date
0
Altmetric
Article

Role of WISP-2/CCN5 in the Maintenance of a Differentiated and Noninvasive Phenotype in Human Breast Cancer Cells

, , , , , , , , & show all
Pages 1114-1123 | Received 25 Jul 2007, Accepted 16 Nov 2007, Published online: 27 Mar 2023
 

Abstract

WISP-2/CCN5 is an estrogen-regulated member of the “connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed” (CCN) family of the cell growth and differentiation regulators. The WISP-2/CCN5 mRNA transcript is undetectable in normal human mammary cells, as well as in highly aggressive breast cancer cell lines, in contrast with its higher level in the breast cancer cell lines characterized by a more differentiated phenotype. We report here that knockdown of WISP-2/CCN5 by RNA interference in estrogen receptor alpha (ERα)-positive MCF-7 breast cancer cells induced an estradiol-independent growth linked to a loss of ERα expression and promoted epithelial-to-mesenchymal transdifferentiation. In contrast, forced expression of WISP-2/CCN5 directed MCF-7 cells toward a more differentiated phenotype. When introduced into the poorly differentiated, estrogen-independent, and invasive MDA-MB-231 breast cancer cells, WISP-2/CCN5 was able to reduce their proliferative and invasive phenotypes. In a series of ERα-positive tumor biopsies, we found a positive correlation between the expression of WISP-2/CCN5 and ID2, a transcriptional regulator of differentiation in normal and transformed breast cells. We propose that WISP-2/CCN5 is an important regulator involved in the maintenance of a differentiated phenotype in breast tumor epithelial cells and may play a role in tumor cell invasion and metastasis.

ACKNOWLEDGMENTS

We thank the staff of the Centre René Huguenin for assistance in specimen collection and patient care. We thank J. Mester and A. Zimber for critical review of the manuscript. We thank D. Catala for technical assistance. We thank A. Gompel and A. Courtin for human breast epithelial cells.

This study was supported by the Centre National de la Recherche Scientifique and the Ligue Nationale contre le Cancer, Comité de Paris.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.