14
Views
48
CrossRef citations to date
0
Altmetric
Article

p27kip1 Deficiency Impairs G2/M Arrest in Response to DNA Damage, Leading to an Increase in Genetic Instability

, , , , , , & show all
Pages 258-268 | Received 22 Aug 2007, Accepted 09 Oct 2007, Published online: 27 Mar 2023
 

Abstract

p27kip1 is a cyclin-dependent kinase inhibitor and a tumor suppressor. In some tumors, p27 suppresses tumor growth by inhibition of cell proliferation. However, this is not universally observed, implying additional mechanisms of tumor suppression by p27. p27-deficient mice are particularly susceptibility to genotoxin-induced tumors, suggesting a role for p27 in the DNA damage response. To test this hypothesis, we measured genotoxin-induced mutations and chromosome damage in p27-deficient mice. Both p27+/− and p27−/− mice displayed a higher N-ethyl-N-nitrosourea-induced mutation frequency in the colon than p27+/+ littermates. Furthermore, cells from irradiated p27-deficient mice exhibited a higher number of chromatid breaks and showed modestly increased micronucleus formation compared to cells from wild-type littermates. To determine if this mutator phenotype was related to the cell cycle-inhibitory function of p27, we measured cell cycle arrest in response to DNA damage. Both normal and tumor cells from p27-deficient mice showed impaired G2/M arrest following low doses of ionizing radiation. Thus, p27 may inhibit tumor development through two mechanisms. The first is by reducing the proliferation of cells that have already sustained an oncogenic lesion. The second is by transient inhibition of cell cycle progression following genotoxic insult, thereby minimizing chromosome damage and fixation of mutations.

ACKNOWLEDGMENTS

We thank M. Fero, J. Roberts, and A. Besson for providing p27 knockout mice and immortalized MEFs and for constructive comments on the manuscript.

This work was supported by the American Cancer Society, the Life Possibilities Fund, and Public Health Service grant CA099517 from the National Cancer Institute. S.R.P. was supported by an NIH training grant in the Molecular Training Program in Cancer Research through the University of Washington.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.