9
Views
66
CrossRef citations to date
0
Altmetric
Article

CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP) Regulates Osteoblast Differentiation

, , , , , , , , , , , , , & show all
Pages 6105-6116 | Received 21 Dec 2005, Accepted 26 May 2006, Published online: 27 Mar 2023
 

Abstract

Differentiation of committed osteoblasts is controlled by complex activities involving signal transduction and gene expression, and Runx2 and Osterix function as master regulators for this process. Recently, CCAAT/enhancer-binding proteins (C/EBPs) have been reported to regulate osteogenesis in addition to adipogenesis. However, the roles of C/EBP transcription factors in the control of osteoblast differentiation have yet to be fully elucidated. Here we show that C/EBP homologous protein (CHOP; also known as C/EBPζ) is expressed in bone as well as in mesenchymal progenitors and primary osteoblasts. Overexpression of CHOP reduces alkaline phosphatase activity in primary osteoblasts and suppresses the formation of calcified bone nodules. CHOP-deficient osteoblasts differentiate more strongly than their wild-type counterparts, suggesting that endogenous CHOP plays an important role in the inhibition of osteoblast differentiation. Furthermore, endogenous CHOP induces differentiation of calvarial osteoblasts upon bone morphogenetic protein (BMP) treatment. CHOP forms heterodimers with C/EBPβ and inhibits the DNA-binding activity as well as Runx2-binding activity of C/EBPβ, leading to inhibition of osteocalcin gene transcription. These findings indicate that CHOP acts as a dominant-negative inhibitor of C/EBPβ and prevents osteoblast differentiation but promotes BMP signaling in a cell-type-dependent manner. Thus, endogenous CHOP may have dual roles in regulating osteoblast differentiation and bone formation.

We thank A. Hanyu, N. Kaneniwa, E. Kobayashi, and Y. Yuuki (The Cancer Institute) for technical assistance.

This research was supported by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. T.I. was supported by the Tokyo Biochemical Research Foundation and the Takeda Science Foundation. S.M. was supported by the Takeda Science Foundation and the Uehara Memorial Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.