53
Views
37
CrossRef citations to date
0
Altmetric
Article

Selective Ubiquitylation of p21 and Cdt1 by UBCH8 and UBE2G Ubiquitin-Conjugating Enzymes via the CRL4Cdt2 Ubiquitin Ligase Complex

, , , &
Pages 3136-3145 | Received 13 Apr 2011, Accepted 22 May 2011, Published online: 20 Mar 2023
 

Abstract

CRL4Cdt2 is a cullin-based E3 ubiquitin ligase that promotes the ubiquitin-dependent proteolysis of various substrates implicated in the control of cell cycle and various DNA metabolic processes such as DNA replication and repair. Substrates for CRL4Cdt2 E3 ubiquitin ligase include the replication licensing factor Cdt1 and the cyclin-dependent kinase (Cdk) inhibitor p21. Inhibition of this E3 ligase leads to serious abnormalities of the cell cycle and cell death. The ubiquitin-conjugating enzyme (UBC) involved in this important pathway, however, remains unknown. By a proteomic analysis of Cdt2-associated proteins and an RNA interference-based screening approach, we show that CRL4Cdt2 utilizes two different UBCs to target different substrates. UBCH8, a member of the UBE2E family of UBCs, ubiquitylates and promotes the degradation of p21, both during the normal cell cycle and in UV-irradiated cells. Importantly, depletion of UBCH8 by small interfering RNA (siRNA) increases p21 protein level, delays entry into S phase of the cell cycle, and suppresses the DNA damage response after UV irradiation. On the other hand, members of the UBE2G family of UBCs (UBE2G1 and UBE2G2) cooperate with CRL4Cdt2 to polyubiquitylate and degrade Cdt1 postradiation, an activity that is critical for preventing origin licensing in DNA-damaged cells. Finally, we show that UBCH8, but not UBE2G1 or UBE2G2, is required for CRL4Cdt2-mediated ubiquitylation and degradation of the histone H4 lysine 20 monomethyltransferase Set8, a previously identified CRL4Cdt2 substrate, as well as for CRL4Cdt2-dependent monoubiquitylation of PCNA in unstressed cells. These findings identify the UBCs required for the activity of CRL4Cdt2 on multiple substrates and demonstrate that different UBCs are involved in the selective ubiquitylation of different substrates by the same E3 complex.

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.05496-11.

ACKNOWLEDGMENTS

This work was supported by grants R01 CA60499 and CA89406 to A.D. and the Jonsson Comprehensive Cancer to J.A.W. at UCLA. T.A. was supported by the Cancer Training Grant T32CA009109 and by NCI grant (KCA140774A).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.