0
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The Activity of Transcription Factor PBP, Which Binds to the Proximal Sequence Element of Mammalian U6 Genes, Is Regulated during Differentiation of F9 Cells

, &
Pages 5888-5897 | Received 29 Mar 1995, Accepted 04 Aug 1995, Published online: 30 Mar 2023
 

Abstract

Mouse F9 embryonic carcinoma (EC) cells differentiate in culture to parietal endoderm (PE) cells upon induction with retinoic acid and cyclic AMP. In the course of this process, the expression of polymerase III transcripts, e.g., 5S rRNA and U6 small nuclear RNA, is dramatically reduced. This reduction of endogenous RNA content is accompanied by a loss of transcriptional capacity in cell extracts from PE cells. Partial purification of such extracts reveals that the DNA-binding activity of transcription factor PBP, binding specifically to the proximal sequence element (PSE) sequence of vertebrate U6 genes, is significantly reduced. This finding is corroborated by a loss in the transcriptional activity of this factor in reconstitution assays with partially purified polymerase III transcription components. In contrast, the activity of TFIIIA and TFIIIB and the amount of free TATA-binding protein remain unchanged during the differentiation process analyzed here. These data show for the first time that the PSE-binding protein PBP is essentially involved in the differential regulation of polymerase III genes governed by external promoters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.