3
Views
116
CrossRef citations to date
0
Altmetric
Research Article

The C-Terminal Zinc Finger of GATA-1 or GATA-2 Is Sufficient To Induce Megakaryocytic Differentiation of an Early Myeloid Cell Line

, , , &
Pages 634-641 | Received 06 Sep 1994, Accepted 26 Oct 1994, Published online: 30 Mar 2023
 

Abstract

The GATA-1 and GATA-2 transcription factors, which each contain two homologous zinc fingers, are important hematopoietic regulators expressed within the erythroid, mast cell, and megakaryocytic lineages. Enforced expression of either factor in the primitive myeloid line 416B induces megakaryocytic differentiation. The features of their structure required for this activity have been explored. The ability of 12 GATA-1 mutants to promote 416B maturation was compared with their DNA-binding activity and transactivation potential. Differentiation did not require any of the seven serine residues that are phosphorylated in vivo, an N-terminal region bearing the major transactivation domain, or a C-terminal segment beyond the fingers. Removal of a consensus nuclear localization signal following the second finger did not block differentiation or nuclear translocation. The N-terminal finger was also dispensable, although its removal attenuated differentiation. In contrast, the C-terminal finger was essential, underscoring its distinct function. Remarkably, only 69 residues spanning the C-terminal finger were required to induce limited megakaryocytic differentiation. Analysis of three GATA-2 mutants led to the same conclusion. Endogenous GATA-1 mRNA was induced by most mutants and may contribute to differentiation. Because the GATA-1 C-terminal finger could bind its target site but not transactivate a minimal reporter, it may direct megakaryocytic maturation by derepressing specific genes and/or by interacting with another protein which provides the transactivation function.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.