6
Views
55
CrossRef citations to date
0
Altmetric
Research Article

The Saccharomyces SHP1 Gene, Which Encodes a Regulator of Phosphoprotein Phosphatase 1 with Differential Effects on Glycogen Metabolism, Meiotic Differentiation, and Mitotic Cell Cycle Progression

, &
Pages 2037-2050 | Received 26 Sep 1994, Accepted 03 Jan 1995, Published online: 30 Mar 2023
 

Abstract

The phosphoprotein phosphatase 1 (PP1) catalytic subunit encoded by the Saccharomyces GLC7 gene is involved in control of glycogen metabolism, meiosis, translation, chromosome segregation, cell polarity, and G2/M cell cycle progression. It is also lethal when overproduced. We have isolated strains which are resistant to Glc7p overproduction lethality as a result of mutations in the SHP1 (suppressor of high-copy PP1) gene, which was previously encountered in a genomic sequencing project as an open reading frame whose interruption totally blocked sporulation and slightly slowed cell proliferation. These phenotypes also characterized our shp1 mutations, as did deficient glycogen accumulation. Lysates from the shp1 mutants were deficient in PP1 catalytic activity but exhibited no obvious abnormalities in the steady-state level or subcellular localization pattern of a catalytically active Glc7p-hemagglutinin fusion polypeptide. The lower level of PP1 activity in shp1 cells permitted substitution of a galactose-induced GAL10-GLC7 fusion for GLC7; depletion of Glc7p from these cells by growth in glucose medium resulted in G2/M arrest as previously observed for a glc7cs allele but with depletion arrest occurring most frequently at a later stage of mitosis. The higher requirement of glycogen accumulation and sporulation for PP1 activity would permit their regulation via Glc7p activity, independent of its requirement for mitosis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.