5
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Of the GATA-Binding Proteins, Only GATA-4 Selectively Regulates the Human Interleukin-5 Gene Promoter in Interleukin-5-Producing Cells Which Express multiple GATA-Binding Proteins

, , , , , , , & show all
Pages 3830-3839 | Received 25 Jan 1995, Accepted 14 Apr 1995, Published online: 30 Mar 2023
 

Abstract

Interleukin-5 (IL-5) is produced by T lymphocytes and known to support B-cell growth and eosinophilic differentiation of the progenitor cells. Using ATL-16T cells which express IL-5 mRNA, we have identified a region within the human IL-5 gene promoter that regulates IL-5 gene transcription. This cis-acting sequence contains the core binding motif, (A/T)GATA(A/G), for GATA-binding family proteins and thus suggests the involvement of this family members. In this report, we describe the cloning of human GATA-4 (hGATA-4) and show that hGATA-4 selectively interacts with the 270 GATA site within the IL-5 proximal promoter region. By promoter deletion and mutation analyses, we established this region as a positive regulatory element. Co-transfection experiments revealed that both hGATA-4 and phorbol-12-myristate-13-acetate (PMA)-A23187 stimulation are necessary for IL-5 promoter activation. The requirement for another regulatory element called CLE0, which lies downstream of the 270 GATA site, was also demonstrated. ATL-16T cells express mRNAs of three GATA-binding proteins, hGATA-2, hGATA-3, and hGATA-4, and each of them has a potential to bind to the consensus (A/T)GATA(G/A) motif. However, using ATL-16T nuclear extract, we demonstrated that GATA-4 is the only GATA-binding protein that forms a specific DNA-protein complex with the 270 GATA site. An electrophoretic mobility shift assay with extracts of COS cells expressing GATA-binding proteins showed that GATA-4 has the highest binding affinity for the 270 GATA site among the three GATA-binding proteins. When the transactivation abilities were compared among the three, GATA-4 showed the highest activity. These results demonstrate the selective role of GATA-4 in the transcriptional regulation of the IL-5 gene in a circumstance where multiple members of the GATA-binding proteins are expressed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.