1
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Gene-Specific Signal Transduction between Microtubules and Tubulin Genes in Tetrahymena thermophila

, , &
Pages 5173-5179 | Received 30 Mar 1995, Accepted 16 Jun 1995, Published online: 30 Mar 2023
 

Abstract

Mammalian cells regulate tubulin mRNA abundance by a posttranscriptional mechanism dependent on the concentration of tubulin monomer. Treatment of mammalian cells with microtubule-depolymerizing drugs and microtubule-polymerizing drugs causes decreases and increases in tubulin mRNA, respectively (D. W. Cleve-land, Curr. Opin. Cell Biol. 1:10–14, 1989). In striking contrast to the case with mammalian cells, perturbation of microtubules in Tetrahymena thermophila by microtubule-depolymerizing or -polymerizing drugs increases the level of the single α-tubulin gene message by increasing transcription (L. A. Stargell, D. P. Heruth, J. Gaertig, and M. A. Gorovsky, Mol. Cell. Biol. 12:1443–1450, 1992). In this report we show that antimicrotubule drugs preferentially induce the expression of one of two β-tubulin genes (BTU1) in T. thermophila. In contrast, deciliation induces expression of both β-tubulin genes. Tubulin gene expression was examined in a mutant strain created by transformation with an in vitro-mutagenized β-tubulin gene that conferred resistance to microtubule-depolymerizing drugs and sensitivity to the polymerizing drug taxol and in a strain containing a nitrosoguanidine-induced mutation in the single α-tubulin gene that conferred the same pattern of drug sensitivities. In both cases the levels of tubulin mRNA expression from the drug-inducible BTU1 gene in the mutant cells paralleled the altered growth sensitivities to microtubule drugs. These studies demonstrate that T. thermophila has distinct, gene-specific mechanisms for modulating tubulin gene expression depending on whether ciliary or cytoplasmic microtubules are involved. They also show that the cytoplasmic microtubule cytoskeleton itself participates in a signal transduction pathway that regulates specific tubulin gene transcription in T. thermophila.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.