4
Views
265
CrossRef citations to date
0
Altmetric
Research Article

rac1 Regulates a Cytokine-Stimulated, Redox-Dependent Pathway Necessary for NF-κB Activation

, , , , &
Pages 7115-7121 | Received 06 Jun 1996, Accepted 10 Sep 1996, Published online: 29 Mar 2023
 

Abstract

The signal transduction pathway leading to the activation of the transcription factor NF-κB remains incompletely characterized. We demonstrate that in HeLa cells, transient expression of a constitutively active mutant of the small GTP-binding protein rac1 (V12rac1) leads to a significant increase in NF-κB transcriptional activity. In addition, expression of a dominant-negative rac1 mutant (N17rac1) inhibits basal and interleukin 1β-stimulated NF-κB activity. Gel shift analysis using nuclear extract prepared from HeLa cells infected with a recombinant adenovirus encoding N17rac1 (Ad.N17rac1) showed reduced levels of cytokine-stimulated DNA binding to a consensus NF-κB binding site. We demonstrate that rac proteins function downstream of ras proteins in the activation of NF-κB. In addition, V12rac1 stimulation of NF-κB activity is shown to be independent of the ability of rac proteins to activate the family of c-jun amino-terminal kinases. In an effort to further explore how rac proteins might regulate NF-κB activity, we demonstrate that expression of V12rac1 in HeLa cells or stimulation with cytokine results in a significant increase in intracellular reactive oxygen species (ROS). Treatment of cells with either of two chemically unrelated antioxidants inhibits the rise in ROS that occurs following V12rac1 expression as well as the ability of V12rac1 to stimulate NF-κB activity. These results suggest that in HeLa cells, rac1 regulates intracellular ROS production and that rac proteins function as part of a redox-dependent signal transduction pathway leading to NF-κB activation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.