0
Views
107
CrossRef citations to date
0
Altmetric
Research Article

Non-Mendelian, Heritable Blocks to DNA Rearrangement Are Induced by Loading the Somatic Nucleus of Tetrahymena thermophila with Germ Line-Limited DNA

&
Pages 3658-3667 | Received 11 Jan 1996, Accepted 22 Apr 1996, Published online: 29 Mar 2023
 

Abstract

Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear development of Tetrahymena thermophila. These deletion elements are usually not detected in macronuclear chromosomes. We have interfered with the normal deletion of two of these elements, the adjacent M and R elements, by loading vegetative macronuclei with these elements prior to sexual conjugation. Transformed cell lines containing the exogenous M or R element, carried on high-copy-number vectors containing genes encoding rRNA within parental (old) macronuclei, consistently failed to excise chromosomal copies of the M or R element during formation of new macronuclei. Little or no interference with the deletions of adjacent elements or of unlinked elements was observed. The micronucleus (germ line)-limited region of each element was sufficient to inhibit specific DNA deletion. This interference with DNA deletion usually is manifested as a cytoplasmic dominant trait: deletion elements present in the old macronucleus of one partner of a mating pair were sufficient to inhibit deletion occurring in the other partner. Remarkably, the failure to excise these elements became a non-Mendelian, inheritable trait in the next generation and did not require the high copy number of exogenously introduced elements. The introduction of exogenous deletion elements into parental macronuclei provides us with an epigenetic means to establish a heritable pattern of DNA rearrangement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.