7
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Precise Switching of DNA Replication Timing in the GC Content Transition Area in the Human Major Histocompatibility Complex

, , , , , , , , & show all
Pages 4043-4050 | Received 10 Feb 1997, Accepted 09 Apr 1997, Published online: 29 Mar 2023
 

Abstract

The human genome is composed of long-range G+C% (GC%) mosaic structures thought to be related to chromosome bands. We previously reported a boundary of megabase-sized GC% mosaic domains at the junction area between major histocompatibility complex (MHC) classes II and III, proposing it as a possible chromosome band boundary. DNA replication timing during the S phase is known to be correlated cytogenetically with chromosome band zones, and thus the band boundaries have been predicted to contain a switch point for DNA replication timing. In this study, to identify to the nucleotide sequence level the replication switch point during the S phase, we determined the precise DNA replication timing for MHC classes II and III, focusing on the junction area. To do this, we used PCR-based quantitation of nascent DNA obtained from synchronized human myeloid leukemia HL60 cells. The replication timing changed precisely in the boundary region with a 2-h difference between the two sides, supporting the prediction that this region may be a chromosome band boundary. We supposed that replication fork movement terminates (pauses) or significantly slows in the switch region, which contains dense Alu clusters; polypurine/polypyrimidine tracts; di-, tri-, or tetranucleotide repeats; and medium-reiteration-frequency sequences. Because the nascent DNA in the switch region was recovered at low efficiency, we investigated whether this region is associated with the nuclear scaffold and found three scaffold-associated regions in and around the switch region.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.