10
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Functional Domains of the Human Orphan Receptor ARP-1/ COUP-TFII Involved in Active Repression and Transrepression

, , , , &
Pages 4914-4932 | Received 02 Jan 1997, Accepted 02 Jun 1997, Published online: 29 Mar 2023
 

Abstract

The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed deletion analysis of the protein was performed. Chimeric proteins in which various segments of the ARP-1/COUP-TFII carboxy terminus were fused to the GAL4 DNA binding domain were used to characterize its active repression domain. The smallest segment confering active repressor activity to a heterologous DNA binding domain was found to comprise residues 210 to 414. This domain encompasses the region of ARP-1/COUP-TFII corresponding to helices 3 to 12 in the recently published crystal structure of other members of the nuclear receptor superfamily. It includes the AF-2 AD core domain formed by helix 12 but not the hinge region, which is essential for interaction with a corepressor in the case of the thyroid hormone and retinoic acid receptor. Attachment of the nuclear localization signal from the simian virus 40 large T antigen (Flu tag) to the amino terminus of ARP-1/COUP-TFII abolished its ability to bind to DNA without affecting its repressor activity. By using a series of Flu-tagged mutants, the domains required for transrepressor activity of the protein were mapped. They include the DNA binding domain and the segment spanning residues 193 to 399. Transcriptional activity induced by liver-enriched transactivators such as hepatocyte nuclear factor 3 (HNF-3), C/EBP, or HNF-4 was repressed by ARP-1/COUP-TFII independent of the presence of its cognate binding site, while basal transcription or transcriptional activity induced by ATF or Sp1 was not perturbed by the protein. In conclusion, our results demonstrate that the domains of ARP-1/COUP-TFII required for active repression and transrepression do not coincide. Moreover, they strongly suggest that transrepression is the predominant mechanism underlying repressor activity of ARP-1/COUP-TFII. This mechanism most likely involves interaction of the protein with one or several transcriptional coactivator proteins which are employed by various liver-enriched transactivators but not by ubiquitous factors such as Sp1 or ATF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.