8
Views
32
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Lagging-Strand, Early-Labelling, and Two-Dimensional Gel Assays Suggest Multiple Potential Initiation Sites in the Chinese Hamster Dihydrofolate Reductase Origin

, &
Pages 39-50 | Received 23 Apr 1997, Accepted 02 Oct 1997, Published online: 28 Mar 2023
 

ABSTRACT

There is general agreement that DNA synthesis in the single-copy and amplified dihydrofolate reductase (DHFR) loci of CHO cells initiates somewhere within the 55-kb spacer region between the DHFR and 2BE2121 genes. However, results of lagging-strand, early-labelling fragment hybridization (ELFH), and PCR-based nascent-strand abundance assays have been interpreted to suggest a very narrow zone of initiation centered at a single locus known as ori-β, while two-dimensional (2-D) gel analyses suggest that initiation can occur at any of a large number of potential sites scattered throughout the intergenic region. The results of a leading-strand assay and two intrinsic labelling techniques are compatible with a broad initiation zone in which ori-β and a second locus (ori-γ) are somewhat preferred. To determine how these differing views are shaped by differences in experimental manipulations unrelated to the biology itself, we have applied the lagging-strand, ELFH, neutral-neutral, and/or neutral-alkaline 2-D gel assays to CHOC 400 cell populations synchronized and manipulated in the same way. In our experiments, the lagging-strand assay failed to identify a template strand switch at ori-β; rather, we observed a gradual, undulating change in hybridization bias throughout the intergenic spacer, with hybridization to the two templates being approximately equal near a centered matrix attachment region. In the ELFH assay, all of the fragments in the 55-kb intergenic region were labelled in the first few minutes of the S phase, with the regions encompassing ori-β and ori-γ being somewhat preferred. Under the same conditions, neutral-neutral and neutral-alkaline 2-D gel analyses detected initiation sites at multiple locations in the intergenic spacer. Thus, the results of all existing replicon-mapping methods that have been applied to the amplified DHFR locus in CHOC 400 cells are consistent with a model in which two somewhat preferred subzones reside in a larger zone of multiple potential initiation sites in the intergenic region.

ACKNOWLEDGMENTS

We thank John Kolman and Geoff Wahl (Salk Institute) and Mike Leffak (Wright State University) for very helpful advice concerning the lagging-strand assay. We also thank Howard Cedar (Hebrew University) and Dave Gilbert (Syracuse University) for sharing genomic clones. We are indebted to Carlton White and Kevin Cox for excellent technical assistance.

This work was supported by NIH grant GM26108 to J.L.H.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.