11
Views
69
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Regulation of RNA Polymerase I-Dependent Promoters by the Hepatitis B Virus X Protein via Activated Ras and TATA-Binding Protein

, &
Pages 7086-7094 | Received 24 Jul 1998, Accepted 17 Sep 1998, Published online: 28 Mar 2023
 

ABSTRACT

The hepatitis B virus (HBV) X protein is essential for viral infectivity, and evidence indicates that it is a strong contributor to HBV-mediated oncogenesis. X has been shown to transactivate a wide variety of RNA polymerase (Pol) II-dependent, as well as RNA Pol III-dependent, promoters. In this study, we have investigated the possibility that X modulates RNA Pol I-dependent rRNA transcription. In both human hepatoma Huh7 and Drosophila Schneider S2 cell lines, X expression stimulated rRNA promoter activity. Extracts prepared from X-expressing cells stably transfected with anX gene also exhibited an increased ability to transcribe the rRNA promoter. The mechanism for X transactivation was examined by determining whether this regulatory event was dependent on Ras activation and increased TATA-binding protein (TBP) levels. Our previous studies have demonstrated that X, and the activation of Ras, produces an increase in the cellular levels of TBP (H.-D. Wang, A. Trivedi, and D. L. Johnson, Mol. Cell. Biol. 17:6838–6846, 1997). Expression of a dominant negative form of Ras blocked the X-mediated induction of the rRNA promoters, whereas expression of a constitutively activated form of Ras mimicked the enhancing effect of X on rRNA promoter activity. When TBP was overexpressed in either Huh7 or S2 cells, a dose-dependent increase in rRNA promoter activity was observed. To analyze whether the increase in TBP was modulating rRNA promoter activity indirectly, by increasing activity of RNA Pol II-dependent promoters, a Drosophila TBP cDNA was constructed with a mutation that eliminated its ability to stimulate RNA Pol II-dependent promoters. Transient expression of wild-type TBP in S2 cells increased the activities of specific RNA Pol I- and Pol II-dependent promoters. Expression of the mutant TBP protein failed to enhance the activity of the RNA Pol II-dependent promoters, yet the protein completely retained its ability to stimulate the rRNA promoter. Furthermore, the addition of recombinant TBP to S2 extracts stimulated rRNA promoter activity in vitro. Together, these results demonstrate that the HBV X protein up-regulates RNA Pol I-dependent promoters via a Ras-activated pathway in two distinct cell lines. The enhanced promoter activity can, at least in part, be attributed to the X- and Ras-mediated increase in cellular TBP, a limiting transcription component.

ACKNOWLEDGMENTS

We thank Adrian Vilalta for helpful discussions and Michael Stallcup and Lucio Comai for critical review of the manuscript. We also thank Chiou-Hwa Yuh for help in the constructions of the expression plasmids; Maria Pellegrini for providing pR119B, pT7B, and pDmr19 DNAs; Lucio Comai for providing prHu3; James Ou for providing Huh7 cells; and Michael Holmes and Robert Tjian for providing recombinant TBP.

This work was supported by National Institutes of Health grant CA74138 to D.L.J. and by a predoctoral fellowship from the Pharmaceutical Research and Manufacturers of America Foundation to H.D.W.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.