34
Views
145
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Hir Proteins Are Required for Position-Dependent Gene Silencing in Saccharomyces cerevisiae in the Absence of Chromatin Assembly Factor I

, &
Pages 4793-4806 | Received 11 Mar 1998, Accepted 14 May 1998, Published online: 27 Mar 2023
 

ABSTRACT

Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacΔ mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIRgenes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacΔ mutants, although hirΔ mutants had no silencing defects when CAF-I was intact. Therefore, Hir proteins are required for an alternative silencing pathway that becomes important in the absence of CAF-I. Because Hir proteins regulate expression of histone genes, we tested the effects of histone gene deletion and overexpression on telomeric silencing and found that alterations in histone H3 and H4 levels or in core histone stoichiometry reduced silencing in cacΔ mutants but not in wild-type cells. We therefore propose that Hir proteins contribute to silencing indirectly via regulation of histone synthesis. However, deletion of combinations of CAC and HIR genes also affected the growth rate and in some cases caused partial temperature sensitivity, suggesting that global aspects of chromosome function may be affected by the loss of members of both gene families.

ACKNOWLEDGMENTS

We thank members of the Kaufman and Osley laboratories and D. deBruin, R. Bacon, A. Dillin, and S. Okamura for critical reviews of the manuscript; S. Liebman and J. Berman for communication of results prior to publication; J. Boeke, J. Haber, M. Grunstein, A. Lustig, J. Rine, and F. Winston for strains and plasmids; and J. Chuang for excellent technical assistance.

This work was supported by Department of Energy funds awarded to P.D.K. and administered through the Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098 and by National Institutes of Health grants GM55712 (to P.D.K.) and GM40118 (to M.A.O.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.