3
Views
33
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Atm Is Dispensable for p53 Apoptosis and Tumor Suppression Triggered by Cell Cycle Dysfunction

, , , &
Pages 3095-3102 | Received 06 Jul 1998, Accepted 13 Jan 1999, Published online: 28 Mar 2023
 

Abstract

Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM’s role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.

ACKNOWLEDGMENTS

We thank Le Zhang for excellent technical assistance, Michael Kastan and Eva Lee for providing reagents, and Eva Lee for communication of unpublished data.

This work was supported by grants from the National Institutes of Health (CA65773 and CA46283) to T.V.D.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.