28
Views
79
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Control of Replicative Life Span in Human Cells: Barriers to Clonal Expansion Intermediate Between M1 Senescence and M2 Crisis

, , , , , & show all
Pages 3103-3114 | Received 28 Aug 1998, Accepted 11 Jan 1999, Published online: 28 Mar 2023
 

Abstract

The accumulation of genetic abnormalities in a developing tumor is driven, at least in part, by the need to overcome inherent restraints on the replicative life span of human cells, two of which—senescence (M1) and crisis (M2)—have been well characterized. Here we describe additional barriers to clonal expansion (Mint) intermediate between M1 and M2, revealed by abrogation of tumor-suppressor gene (TSG) pathways by individual human papillomavirus type 16 (HPV16) proteins. In human fibroblasts, abrogation of p53 function by HPVE6 allowed escape from M1, followed up to 20 population doublings (PD) later by a second viable proliferation arrest state, MintE6, closely resembling M1. This occurred despite abrogation of p21WAF1 induction but was associated with and potentially mediated by a further ∼3-fold increase in p16INK4a expression compared to its level at M1. Expression of HPVE7, which targets pRb (and p21WAF1), also permitted clonal expansion, but this was limited predominantly by increasing cell death, resulting in a MintE7 phenotype similar to M2 but occurring after fewer PD. This was associated with, and at least partly due to, an increase in nuclear p53 content and activity, not seen in younger cells expressing E7. In a different cell type, thyroid epithelium, E7 also allowed clonal expansion terminating in a similar state to MintE7 in fibroblasts. In contrast, however, there was no evidence for a p53-regulated pathway; E6 was without effect, and the increases in p21WAF1 expression at M1 and MintE7 were p53 independent. These data provide a model for clonal evolution by successive TSG inactivation and suggest that cell type diversity in life span regulation may determine the pattern of gene mutation in the corresponding tumors.

ACKNOWLEDGMENTS

We thank James Smith (Houston), Denise Galloway (Seattle), David Lane (Dundee) and Jiri Bartek (Danish Cancer Society) for kind gifts of cells, retrovirus vectors, and antibodies, and Roger Reddel (Sydney) and Gordon Peters (ICRF, London) for valuable advice and comments. We are grateful to Theresa King for manuscript preparation.

We are grateful to the Cancer Research Campaign and the Medical Research Council for grant support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.