12
Views
84
CrossRef citations to date
0
Altmetric
Gene Expression

Differentiation-Induced Internal Translation of c-sis mRNA: Analysis of the cis Elements and Their Differentiation-Linked Binding to the hnRNP C Protein

, , &
Pages 5429-5440 | Received 29 Jan 1999, Accepted 14 May 1999, Published online: 28 Mar 2023
 

Abstract

In previous reports we showed that the long 5′ untranslated region (5′ UTR) of c-sis, the gene encoding the B chain of platelet-derived growth factor, has translational modulating activity due to its differentiation-activated internal ribosomal entry site (D-IRES). Here we show that the 5′ UTR contains three regions with a computer-predicted Y-shaped structure upstream of an AUG codon, each of which can confer some degree of internal translation by itself. In nondifferentiated cells, the entire 5′ UTR is required for maximal basal IRES activity. The elements required for the differentiation-sensing ability (i.e., D-IRES) were mapped to a 630-nucleotide fragment within the central portion of the 5′ UTR. Even though the region responsible for IRES activation is smaller, the full-length 5′ UTR is capable of mediating the maximal translation efficiency in differentiated cells, since only the entire 5′ UTR is able to confer the maximal basal IRES activity. Interestingly, a 43-kDa protein, identified as hnRNP C, binds in a differentiation-induced manner to the differentiation-sensing region. Using UV cross-linking experiments, we show that while hnRNP C is mainly a nuclear protein, its binding activity to the D-IRES is mostly nuclear in nondifferentiated cells, whereas in differentiated cells such binding activity is associated with the ribosomal fraction. Since the c-sis 5′ UTR is a translational modulator in response to cellular changes, it seems that the large number of cross-talking structural entities and the interactions with regulated trans-acting factors are important for the strength of modulation in response to cellular changes. These characteristics may constitute the major difference between strong IRESs, such as those seen in some viruses, and IRESs that serve as translational modulators in response to developmental signals, such as that of c-sis.

ACKNOWLEDGMENTS

We thank G. Dreyfuss for monoclonal antibody (4F4) against hnRNP C and Dana Gelbaum for technical help and useful comments.

This work was supported by the Israel Science Foundation, administered by the Israel Academy of Science and Humanities—the Charles H. Revson Foundation. O. Sella acknowledges support from the Charles Clore Foundation doctoral fellowship program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.