8
Views
49
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Interstrand Cross-Links Induce DNA Synthesis in Damaged and Undamaged Plasmids in Mammalian Cell Extracts

, , , &
Pages 5619-5630 | Received 19 Feb 1999, Accepted 19 May 1999, Published online: 28 Mar 2023
 

Abstract

Mammalian cell extracts have been shown to carry out damage-specific DNA repair synthesis induced by a variety of lesions, including those created by UV and cisplatin. Here, we show that a single psoralen interstrand cross-link induces DNA synthesis in both the damaged plasmid and a second homologous unmodified plasmid coincubated in the extract. The presence of the second plasmid strongly stimulates repair synthesis in the cross-linked plasmid. Heterologous DNAs also stimulate repair synthesis to variable extents. Psoralen monoadducts and double-strand breaks do not induce repair synthesis in the unmodified plasmid, indicating that such incorporation is specific to interstrand cross-links. This induced repair synthesis is consistent with previous evidence indicating a recombinational mode of repair for interstrand cross-links. DNA synthesis is compromised in extracts from mutants (deficient in ERCC1, XPF, XRCC2, and XRCC3) which are all sensitive to DNA cross-linking agents but is normal in extracts from mutants (XP-A, XP-C, and XP-G) which are much less sensitive. Extracts from Fanconi anemia cells exhibit an intermediate to wild-type level of activity dependent upon the complementation group. The DNA synthesis deficit in ERCC1- and XPF-deficient extracts is restored by addition of purified ERCC1-XPF heterodimer. This system provides a biochemical assay for investigating mechanisms of interstrand cross-link repair and should also facilitate the identification and functional characterization of cellular proteins involved in repair of these lesions.

ACKNOWLEDGMENTS

We thank A. Sancar and Z.-Q. Pan for providing purified proteins and M. Zdzienicka and N. Jones for providing cell lines.

This work was supported by American Federation of Aging Research grant A95035 and National Institutes of Health grants CA52461, CA75160 and CA76172.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.