16
Views
294
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Redox-Regulated Recruitment of the Transcriptional Coactivators CREB-Binding Protein and SRC-1 to Hypoxia-Inducible Factor 1α

, , , , &
Pages 402-415 | Received 29 Mar 1999, Accepted 14 Sep 1999, Published online: 28 Mar 2023
 

Abstract

Hypoxia-inducible factor 1α (HIF-1α) functions as a transcription factor that is activated by decreased cellular oxygen concentrations to induce expression of a network of genes involved in angiogenesis, erythropoiesis, and glucose homeostasis. Here we demonstrate that two members of the SRC-1/p160 family of transcriptional coactivators harboring histone acetyltransferase activity, SRC-1 and transcription intermediary factor 2 (TIF2), are able to interact with HIF-1α and enhance its transactivation potential in a hypoxia-dependent manner. HIF-1α contains within its C terminus two transactivation domains. The hypoxia-inducible activity of both these domains was enhanced by either SRC-1 or the CREB-binding protein (CBP)/p300 coactivator. Moreover, at limiting concentrations, SRC-1 produced this effect in synergy with CBP. Interestingly, this effect was strongly potentiated by the redox regulatory protein Ref-1, a dual-function protein harboring DNA repair endonuclease and cysteine reducing activities. These data indicate that all three proteins, CBP, SRC-1, and Ref-1, are important components of the hypoxia signaling pathway and have a common function in regulation of HIF-1α function in hypoxic cells. Given the absence of cysteine residues in one of the Ref-1-regulated transactivation domains of HIF-1α, it is thus possible that Ref-1 functions in hypoxic cells by targeting critical steps in the recruitment of the CBP–SRC-1 coactivator complex.

ACKNOWLEDGMENTS

We thank M. G. Parker for the SRC-1 M1234 construct. We also thank Anders Berkenstam and Yuichi Makino for stimulating discussions and helpful advice.

This study was supported by grants from the Swedish Medical Research Council, Pharmacia and Upjohn, Akiyama Foundation, and NOVARTIS Foundation (Japan) for the Promotion of Science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.