17
Views
99
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Receptor-Like Protein Tyrosine Phosphatase α Homodimerizes on the Cell Surface

, &
Pages 5917-5929 | Received 28 Dec 1999, Accepted 12 May 2000, Published online: 28 Mar 2023
 

Abstract

We reported previously that the N-terminal D1 catalytic domain of receptor protein-tyrosine phosphatase α (RPTPα) forms a symmetrical, inhibited dimer in a crystal structure, in which a helix-turn-helix wedge element from one monomer is inserted into the catalytic cleft of the other monomer. Previous functional studies also suggested that dimerization inhibits the biological activity of a CD45 chimeric RPTP and the catalytic activity of an isolated RPTPς D1 catalytic domain. Most recently, we have also shown that enforced dimerization inhibits the biological activity of full-length RPTPα in a wedge-dependent manner. The physiological significance of such inhibition is unknown, due to a lack of understanding of how RPTPα dimerization is regulated in vivo. In this study, we show that transiently expressed cell surface RPTPα exists predominantly as homodimers, suggesting that dimerization-mediated inhibition of RPTPα biological activity is likely to be physiologically relevant. Consistent with our published and unpublished crystallographic data, we show that mutations in the wedge region of D1 catalytic domain and deletion of the entire D2 catalytic domain independently reduced but did not abolish RPTPα homodimerization, suggesting that both domains are critically involved but that neither is essential for homodimerization. Finally, we also provide evidence that both the RPTPα extracellular domain and the transmembrane domain were independently able to homodimerize. These results lead us to propose a zipper model in which inactive RPTPα dimers are stabilized by multiple, relatively weak dimerization interfaces. Dimerization in this manner would provide a potential mechanism for negative regulation of RPTPα. Such RPTPα dimers could be activated by extracellular ligands or intracellular binding proteins that induce monomerization or by intracellular signaling events that induce an open conformation of the dimer.

ACKNOWLEDGMENTS

We thank Nigel Carter for providing us with the ephrin A1 construct and antibodies and Gunnar von Heijne, Ismael Mingarr, and Mark Lemmon for providing the pSN/GpA plasmid. We are very grateful to Walter Eckhart, Joel Leverson, Claudio Joazeiro, and Peter Blume-Jensen for insightful discussions and critical review of the manuscript.

This work was supported by USPHS grants CA14195 and CA39780 from the National Cancer Institute. G.J. was the recipient of a postdoctoral fellowship from the American Cancer Society. T.H. is a Frank and Else Schilling American Cancer Society Research Professor.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.