35
Views
79
CrossRef citations to date
0
Altmetric
Gene Expression

Kinetics of Ribosomal Pausing during Programmed −1 Translational Frameshifting

, &
Pages 1095-1103 | Received 09 Aug 1999, Accepted 16 Nov 1999, Published online: 28 Mar 2023
 

Abstract

In the Saccharomyces cerevisiae double-stranded RNA virus, programmed −1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the −1 frame. Ribosomes that continue in the −1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.

ACKNOWLEDGMENTS

We thank A. Hinnebusch and T. Dever for plasmids.

We thank the NIH (grant GM58859 to J.D.D. and grant GM22200 to J.A.B.) and the NSF (grant MCB9727630 to J.A.B.) for support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.