21
Views
48
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Differential Regulation of E2F1, DP1, and the E2F1/DP1 Complex by ARF

, &
Pages 8398-8408 | Received 02 Apr 2002, Accepted 19 Sep 2002, Published online: 28 Mar 2023
 

Abstract

The tumor suppressor protein ARF inhibits MDM2 to activate and stabilize p53. Recent studies provided evidence for p53-independent tumor suppression functions of ARF. For example, it has been shown that ARF induces proteolysis of certain E2F species, including E2F1. In addition, ARF relocalizes E2F1 from the nucleoplasm to nucleolus and inhibits E2F1-activated transcription. Because DP1 is a functional partner of the E2F family of factors, we investigated whether DP1 is also regulated by ARF. Here we show that DP1 associates with ARF. Coexpression of ARF relocalizes DP1 from the cytoplasm to the nucleolus, suggesting that DP1 is also a target of the ARF regulatory pathways. Surprisingly, however, the E2F1/DP1 complex is refractory to ARF regulation. Coexpression of E2F1 and DP1 blocks ARF-induced relocalization of either subunit to the nucleolus. The E2F1/DP1 complex localizes in the nucleoplasm, whereas ARF is detected in the nucleolus, suggesting that ARF does not interact with the E2F1/DP1 complex. Moreover, we show that E2F1 is more stable in the presence of ARF when coexpressed with DP1. These results suggest that ARF differentially regulates the free and heterodimeric forms of E2F1 and DP1. DP1 is a constitutively expressed protein, whereas E2F1 is mainly expressed at the G1/S boundary of the cell cycle. Therefore, the E2F1/DP1 complex is abundant only between late G1 and early S phase. Our results on the differential regulation E2F1, DP1, and the E2F1/DP1 complex suggest the possibility that ARF regulates the function of these cell cycle factors by altering the dynamics of their heterodimerization during progression from G1 to S phase.

View correction statement:
Differential Regulation of E2F1, DP1, and the E2F1/DP1 Complex by ARF

We thank Guy Adami (UIC) for helpful advice during the course of this work. We also thank C. Sherr, St. Jude Children's Hospital, for the mouse ARF expression clones.

The work was supported by a grant from the NCI (RO1 CA 77637) to P.R.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.