45
Views
100
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

HMG2 Interacts with the Nucleosome Assembly Protein SET and Is a Target of the Cytotoxic T-Lymphocyte Protease Granzyme A

, , &
Pages 2810-2820 | Received 28 Dec 2001, Accepted 22 Jan 2002, Published online: 28 Mar 2023
 

Abstract

The cytotoxic T-lymphocyte protease granzyme A induces caspase-independent cell death in which DNA single-stranded nicking is observed instead of oligonucleosomal fragmentation. A 270- to 420-kDa endoplasmic reticulum-associated complex (SET complex) containing the nucleosome assembly protein SET, the tumor suppressor pp32, and the base excision repair enzyme APE can induce single-stranded DNA damage in isolated nuclei in a granzyme A-dependent manner. The normal functions of the SET complex are unknown, but the functions of its components suggest that it is involved in activating transcription and DNA repair. We now find that the SET complex contains DNA binding and bending activities mediated by the chromatin-associated protein HMG2. HMG2 facilitates assembly of nucleoprotein higher-order structures by bending and looping DNA or by stabilizing underwound DNA. HMG2 is in the SET complex and coprecipitates with SET. By confocal microscopy, it is observed that cytoplasmic HMG2 colocalizes with SET in association with the endoplasmic reticulum, but most nuclear HMG2 is unassociated with SET. This physical association suggests that HMG2 may facilitate the nucleosome assembly, transcriptional activation, and DNA repair functions of SET and/or APE. HMG2, like SET and APE, is a physiologically relevant granzyme A substrate in targeted cells. HMG1, however, is not a substrate. Granzyme A cleavage after Lys65 in the midst of HMG box A destroys HMG2-mediated DNA binding and bending functions. Granzyme A cleavage and functional disruption of key nuclear substrates, including HMG2, SET, APE, lamins, and histones, are likely to cripple the cellular repair response to promote cell death in this novel caspase-independent death pathway.

This work was supported by Public Health Service grant AI-45587 from the National Institute of Allergy and Infectious Diseases (J.L.).

We thank Zhan Xu and David Oh for technical support. We also thank K. Nagata for supernatant from hybridoma KM1720, Z. Damuni for pp32 plasmid, I. Hickson for APE plasmid, and P. Sharp for HMG2 plasmid.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.