139
Views
384
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Estrogen-Related Receptor α Directs Peroxisome Proliferator-Activated Receptor α Signaling in the Transcriptional Control of Energy Metabolism in Cardiac and Skeletal Muscle

, , , &
Pages 9079-9091 | Received 26 Feb 2004, Accepted 26 Jul 2004, Published online: 27 Mar 2023
 

Abstract

Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.

This work is supported by NIH grants DK45416 and HL58493, Digestive Diseases Core Center grant P30DK52574 (D.P.K), and an operating grant from the Canadian Institutes for Health Research (V.G.). J.M.H. is supported by NIH 1K01 DK063051-01 and the Washington University School of Medicine Diabetes Research Training Center P60 DK20579.

We thank the Alvin Siteman Cancer Center Multiplexed Gene Analysis Core at Washington University School of Medicine for performing DNA microarray analyses and the Digestive Disease Histology Core for histologic studies. We thank Mary Wingate for expert assistance in preparing the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.