46
Views
116
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Mutational Analysis of the N-Terminal DNA-Binding Domain of Sleeping Beauty Transposase: Critical Residues for DNA Binding and Hyperactivity in Mammalian Cells

, , , &
Pages 9239-9247 | Received 13 May 2004, Accepted 21 Jul 2004, Published online: 27 Mar 2023
 

Abstract

The N-terminal domain of the Sleeping Beauty (SB) transposase mediates transposon DNA binding, subunit multimerization, and nuclear translocation in vertebrate cells. For this report, we studied the relative contributions of 95 different residues within this multifunctional domain by large-scale mutational analysis. We found that each of four amino acids (leucine 25, arginine 36, isoleucine 42, and glycine 59) contributes to DNA binding in the context of the N-terminal 123 amino acids of SB transposase, as indicated by electrophoretic mobility shift analysis, and to functional activity of the full-length transposase, as determined by a quantitative HeLa cell-based transposition assay. Moreover, we show that amino acid substitutions within either the putative oligomerization domain (L11A, L18A, L25A, and L32A) or the nuclear localization signal (K104A and R105A) severely impair its ability to mediate DNA transposition in mammalian cells. In contrast, each of 10 single amino acid changes within the bipartite DNA-binding domain is shown to greatly enhance SB's transpositional activity in mammalian cells. These hyperactive mutations functioned synergistically when combined and are shown to significantly improve transposase affinity for transposon end sequences. Finally, we show that enhanced DNA-binding activity results in improved cleavage kinetics, increased SB element mobilization from host cell chromosomes, and dramatically improved gene transfer capabilities of SB in vivo in mice. These studies provide important insights into vertebrate transposon biology and indicate that Sleeping Beauty can be readily improved for enhanced genetic research applications in mammals.

We thank P. Hackett for kindly providing the SB antibody, A. McCaffrey for many helpful discussions, and H. Xu and Z. Huang for technical assistance.

This work was supported by a National Institutes of Heath grant to M.A.K. (AR44012), a Walter V. Berry Fellowship to S.R.Y., and grants from the Carlsberg Foundation and the Danish Medical Research Council to J.G.M.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.