27
Views
94
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Human Immunodeficiency Virus Type 1 Vpr-Mediated G2 Arrest Requires Rad17 and Hus1 and Induces Nuclear BRCA1 and γ-H2AX Focus Formation

, , , , , , , , & show all
Pages 9286-9294 | Received 07 Jul 2004, Accepted 12 Aug 2004, Published online: 27 Mar 2023
 

Abstract

Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G2 phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G2 arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G2 arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4+-lymphocyte cell cycle and apoptosis induction in the progressive CD4+-lymphocyte depletion characteristic of HIV-1 pathogenesis.

We thank Robert Weiss at Cornell University for the generous gifts of Hus1−/− p21−/− mouse embryonic fibroblasts and Hus1+/+ p21−/− mouse embryonic fibroblasts, Wayne Green at the University of Utah Flow Cytometry Core Facility for expert assistance with flow cytometry, and Chris Rodesch at the University of Utah Cell Imaging Core Facility for help with confocal microscopy. Matt Mulvey, Jamie Sundsbak, and Danelle Eto provided invaluable help with immunofluorescence techniques.

This work was supported by National Institutes of Health research grants AI49057 and AI054188 to V.P.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.