41
Views
188
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Suppression of PTEN Expression by NF-κB Prevents Apoptosis

, &
Pages 1007-1021 | Received 04 Apr 2003, Accepted 27 Oct 2003, Published online: 27 Mar 2023
 

Abstract

NF-κB is a heterodimeric transcription activator consisting of the DNA binding subunit p50 and the transactivation subunit p65/RelA. NF-κB prevents cell death caused by tumor necrosis factor (TNF) and other genotoxic insults by directly inducing antiapoptotic target genes. We report here that the tumor suppressor PTEN, which functions as a negative regulator of phosphatidylinositol (PI)-3 kinase/Akt-mediated cell survival pathway, is down regulated by p65 but not by p50. Moreover, a subset of human lung or thyroid cancer cells expressing high levels of endogenous p65 showed decreased expression of PTEN that could be rescued by specific inhibition of the NF-κB pathway with IκB overexpression as well as with small interfering RNA directed against p65. Importantly, TNF, a potent inducer of NF-κB activity, suppressed PTEN gene expression in IKKβ+/+ cells but not in IKKβ−/− cells, which are deficient in the NF-κB activation pathway. These findings indicated that NF-κB activation was necessary and sufficient for inhibition of PTEN expression. The promoter, RNA, and protein levels of PTEN are down-regulated by NF-κB. The mechanism underlying suppression of PTEN expression by NF-κB was independent of p65 DNA binding or transcription function and involved sequestration of limiting pools of transcriptional coactivators CBP/p300 by p65. Restoration of PTEN expression inhibited NF-κB transcriptional activity and augmented TNF-induced apoptosis, indicating a negative regulatory loop involving PTEN and NF-κB. PTEN is, thus, a novel target whose suppression is critical for antiapoptosis by NF-κB.

This study was supported by NIH and NCI grants CA60872 and CA84511 (to V.M.R.).

We thank Eileen Adamson, Burnham Institute, for the kind gift of the PTEN promoter construct.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.