20
Views
52
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

Clb6/Cdc28 and Cdc14 Regulate Phosphorylation Status and Cellular Localization of Swi6

, , , &
Pages 2277-2285 | Received 09 Oct 2003, Accepted 29 Dec 2003, Published online: 27 Mar 2023
 

Abstract

Nuclear export of the transcription factor Swi6 during the budding yeast Saccharomyces cerevisiae cell cycle is known to require phosphorylation of the Swi6 serine 160 residue. We show that Clb6/Cdc28 kinase is required for this nuclear export. Furthermore, Cdc28 combined with the S-phase cyclin Clb6 specifically phosphorylates serine 160 of Swi6 in vitro. Nuclear import of Swi6 occurs concomitantly with dephosphorylation of serine 160 in late M phase. We show that Cdc14 phosphatase, the principal effector of the mitotic exit network, can trigger nuclear import of Swi6 in vivo and that Cdc14 dephosphorylates Swi6 at serine 160 in vitro. Taken together, these observations show how Swi6 dephosphorylation and phosphorylation are integrated into changes of Cdc28 activity governing entry and exit from the G1 phase of the cell cycle.

We are indebted to Lee Johnston, Eliot Randle, Sanne Jensen, and Ian Taylor for plasmid and yeast stocks and purified proteins. We thank Lee Johnston, Sanne Jensen, Anthony Johnson, and Marisa Segal for help, advice, and encouragement.

G. Wells was supported by an MRC studentship and M. Geymonat was supported by the Association for International Cancer Research, grant 99-008.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.