82
Views
202
CrossRef citations to date
0
Altmetric
Gene Expression

Blockade of Histone Deacetylase Inhibitor-Induced RelA/p65 Acetylation and NF-κB Activation Potentiates Apoptosis in Leukemia Cells through a Process Mediated by Oxidative Damage, XIAP Downregulation, and c-Jun N-Terminal Kinase 1 Activation

, , &
Pages 5429-5444 | Received 23 Nov 2004, Accepted 29 Mar 2005, Published online: 27 Mar 2023
 

Abstract

NF-κB activation is reciprocally regulated by RelA/p65 acetylation and deacetylation, which are mediated by histone acetyltransferases (HATs) and deacetylases (HDACs). Here we demonstrate that in leukemia cells, NF-κB activation by the HDAC inhibitors (HDACIs) MS-275 and suberoylanilide hydroxamic acid was associated with hyperacetylation and nuclear translocation of RelA/p65. The latter events, as well as the association of RelA/p65 with IκBα, were strikingly diminished by either coadministration of the IκBα phosphorylation inhibitor Bay 11-7082 (Bay) or transfection with an IκBα superrepressor. Inhibition of NF-κB by pharmacological inhibitors or genetic strategies markedly potentiated apoptosis induced by HDACIs, and this was accompanied by enhanced reactive oxygen species (ROS) generation, downregulation of Mn-superoxide dismutase and XIAP, and c-Jun N-terminal kinase 1 (JNK1) activation. Conversely, N-acetyl l-cysteine blocked apoptosis induced by Bay/HDACIs by abrogating ROS generation. Inhibition of JNK1 activation attenuated Bay/HDACI lethality without affecting NF-κB inactivation and ROS generation. Finally, XIAP overexpression dramatically protected cells against the Bay/HDACI regimen but failed to prevent ROS production and JNK1 activation. Together, these data suggest that HDACIs promote the accumulation of acetylated RelA/p65 in the nucleus, leading to NF-κB activation. Moreover, interference with these events by either pharmacological or genetic means leads to a dramatic increase in HDACI-mediated lethality through enhanced oxidative damage, downregulation of NF-κB-dependent antiapoptotic proteins, and stress-related JNK1 activation.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grants CA-63753, CA-93738, CA-100866, and CA88906 from the National Cancer Institute, grant DK52825 from the National Institutes of Health, award 6045-03 from the Leukemia and Lymphoma Society of America, and a Translational Research award from the V-Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.