82
Views
101
CrossRef citations to date
0
Altmetric
Gene Expression

Dual Activators of the Sterol Biosynthetic Pathway of Saccharomyces cerevisiae: Similar Activation/Regulatory Domains but Different Response Mechanisms

, &
Pages 7375-7385 | Received 18 Mar 2005, Accepted 31 May 2005, Published online: 27 Mar 2023
 

Abstract

Genes encoding biosynthetic enzymes that make ergosterol, the major fungal membrane sterol, are regulated, in part, at the transcriptional level. Two transcription factors, Upc2p and Ecm22p, bind to the promoters of most ergosterol biosynthetic (ERG) genes, including ERG2 and ERG3, and activate these genes upon sterol depletion. We have identified the transcriptional activation domains of Upc2p and Ecm22p and found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain. The equivalent mutation in ECM22 also greatly enhanced transcriptional activation. The C-terminal regions of Upc2p and Ecm22p, which contained activation domains, also conferred regulation in response to sterol levels. Hence, the activation and regulatory domains of these proteins overlapped. However, the two proteins differed markedly in how they respond to an increased need for sterols. Upon inducing conditions, Upc2p levels increased, and chromatin immunoprecipitation experiments revealed more Upc2p at promoters even when the activation/regulatory domains were tethered to a different DNA-binding domain. However, induction resulted in decreased Ecm22p levels and a corresponding decrease in the amount of Ecm22p bound to promoters. Thus, these two activators differ in their contributions to the regulation of their targets.

ACKNOWLEDGMENTS

We thank Bryan Zeitler for helpful ideas and excellent technical assistance.

This work was supported by a grant from the National Institutes of Health (GM35827), with core support from an NIEHS Mutagenesis Center grant (ESO1896). B.S.J.D. was supported in part by training grants from the National Institutes of Health (5 T32 GM07232 and 5 T32 ES07075).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.