56
Views
91
CrossRef citations to date
0
Altmetric
Gene Expression

F-Spondin Interaction with the Apolipoprotein E Receptor ApoEr2 Affects Processing of Amyloid Precursor Protein

, , , , &
Pages 9259-9268 | Received 12 Jul 2005, Accepted 08 Aug 2005, Published online: 27 Mar 2023
 

Abstract

A recent study showed that F-spondin, a protein associated with the extracellular matrix, interacted with amyloid precursor protein (APP) and inhibited β-secretase cleavage. F-spondin contains a thrombospondin domain that we hypothesized could interact with the family of receptors for apolipoprotein E (apoE). Through coimmunoprecipitation experiments, we demonstrated that F-spondin interacts with an apoE receptor (apoE receptor 2 [ApoEr2]) through the thrombospondin domain of F-spondin and the ligand binding domain of ApoEr2. Full-length F-spondin increased coimmunoprecipitation of ApoEr2 and APP in transfected cells and primary neurons and increased surface expression of APP and ApoEr2. Full-length F-spondin, but none of the individual F-spondin domains, increased cleavage of APP and ApoEr2, resulting in more secreted forms of APP and ApoEr2 and more C-terminal fragments (CTF) of these proteins. In addition, full-length F-spondin, but not the individual domains, decreased production of the β-CTF of APP and Aβ in transfected cells and primary neurons. The reduction in APP β-CTF was blocked by receptor-associated protein (RAP), an inhibitor of lipoprotein receptors, implicating ApoEr2 in the altered proteolysis of APP. ApoEr2 coprecipitated with APP α- and β-CTF, and F-spondin reduced the levels of APP intracellular domain signaling, suggesting that there are also intracellular interactions between APP and ApoEr2, perhaps involving adaptor proteins. These studies suggest that the extracellular matrix molecule F-spondin can cluster APP and ApoEr2 together on the cell surface and affect the processing of each, resulting in decreased production of Aβ.

ACKNOWLEDGMENTS

We thank T. C. Sudhof for providing full-length F-spondin plasmid DNA; Avihu Klar for antibodies and advice; and Anne Cataldo, Sam Gandy, and Johannes Nimpf for antibodies. We also thank Oksana Berezovska and Dudley Strickland for useful reagents and materials. We thank Ana Pocivavsek for excellent technical assistance.

This work is supported by NIH grant AG14473.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.