21
Views
26
CrossRef citations to date
0
Altmetric
Gene Expression

Strong Polyadenylation and Weak Pausing Combine To Cause Efficient Termination of Transcription in the Human Gγ-Globin Gene

, , &
Pages 3276-3285 | Received 17 Sep 2004, Accepted 23 Dec 2004, Published online: 27 Mar 2023
 

Abstract

The human γ-globin genes form part of a 5-kb tandem duplication within the β-globin gene cluster on chromosome 11. Despite a high degree of identity between the two genes, we show that while the upstream Gγ-globin gene terminates transcription efficiently, termination in the Aγ gene is inefficient. This is primarily due to the different strengths of the poly(A) signals of the two genes; Gγ-globin has a functionally stronger poly(A) signal than the Aγ gene. The probable cause of this difference in poly(A) efficiency characteristics lies with a number of base changes which reduce the G/U content of the GU/U-rich region of the Aγ poly(A) signal relative to that of Gγ. The 3′ flanking regions of the two γ-globin genes have similar abilities to promote transcription termination. We found no evidence to suggest a cotranscriptional cleavage event, such as that seen in the human β-globin gene, occurs in either γ-globin 3′ flank. Instead we find evidence that the 3′ flank of the Gγ-globin gene contains multiple weak pause elements which, combined with the strong poly(A) signal the gene possesses, are likely to cause gradual termination across the 3′ flank.

ACKNOWLEDGMENTS

We thank the members of the lab of N.J.P. for advice during these studies.

This work was supported by the Wellcome Trust (program grant to N.J.P.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.