66
Views
110
CrossRef citations to date
0
Altmetric
Article

Proteasome Activator PA200 Is Required for Normal Spermatogenesis

, , , , , , , , , & show all
Pages 2999-3007 | Received 21 Nov 2005, Accepted 30 Jan 2006, Published online: 27 Mar 2023
 

Abstract

The PA200 proteasome activator is a broadly expressed nuclear protein. Although how PA200 normally functions is not fully understood, it has been suggested to be involved in the repair of DNA double-strand breaks (DSBs). The PA200 gene (Psme4) is composed of 45 coding exons spanning 108 kb on mouse chromosome 11. We generated a PA200 null allele (PA200Δ) through Cre-loxP-mediated interchromosomal recombination after targeting loxP sites at either end of the locus. PA200Δ/Δ mice are viable and have no obvious developmental abnormalities. Both lymphocyte development and immunoglobulin class switching, which rely on the generation and repair of DNA DSBs, are unperturbed in PA200Δ/Δ mice. Additionally, PA200Δ/Δ embryonic stem cells do not exhibit increased sensitivity to either ionizing radiation or bleomycin. Thus, PA200 is not essential for the repair of DNA DSBs generated in these settings. Notably, loss of PA200 led to a marked reduction in male, but not female, fertility. This was due to defects in spermatogenesis observed in meiotic spermatocytes and during the maturation of postmeiotic haploid spermatids. Thus, PA200 serves an important nonredundant function during spermatogenesis, suggesting that the efficient generation of male gametes has distinct protein metabolic requirements.

We thank Daniel Finley and Marion Schmidt for critical review of the manuscript.

This work is supported in part by National Institutes of Health grants AI47829 and AI47829 (B.P.S.) and American Cancer Society grant RSG-05-070-01-LIB (B.P.S.). C.H. is supported by a postdoctoral training grant from the NIH. Mice were produced by a transgenic core facility supported by the Rheumatic Diseases Core Center at Washington University (NIH P30-AR48335) and housed in a facility supported by NCRR grant RR012466.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.