0
Views
10
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Enhanced Translation and Increased Turnover of c-myc Proteins Occur during Differentiation of Murine Erythroleukemia Cells

&
Pages 3952-3964 | Received 02 Mar 1990, Accepted 07 May 1990, Published online: 31 Mar 2023
 

Abstract

To determine whether regulation of c-myc proteins occurs during the differentiation of murine erythroleukemia cells, we examined c-myc protein synthesis and accumulation throughout dimethyl sulfoxide (DMSO)- or hypoxanthine-induced differentiation, c-myc protein expression exhibited an overall biphasic reduction, with an initial concomitant decrease in c-myc RNA, protein synthesis, and protein accumulation early during the commitment phase. However, as the mRNA and protein levels recovered, c-myc protein synthesis levels dissociated from the levels of c-myc mRNA and protein accumulation. This dissociation appears to result from unusual translational and posttranslational regulation during differentiation. Translational enhancement was suggested by the observation that relatively high levels of c-myc proteins were synthesized from relatively moderate levels of c-myc RNA. This translational enhancement was not observed with c-myb. Under certain culture conditions, we also observed a change in the relative synthesis ratio of the two independently initiated c-myc proteins. Posttranslational regulation was evidenced by a dramatic postcommitment decrease in the accumulated c-myc protein levels despite relatively high levels of c-myc protein synthesis. This decrease corresponded with a twofold increase in the turnover of c-myc proteins. The consequence of this regulation was that the most substantial decrease in c-myc protein accumulation occurred during the postcommitment phase of differentiation. This result supports the hypothesis that the reduction in c-myc at relatively late times is most important for completion of murine erythroleukemia cell terminal differentiation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.